Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0368420070500050595
Journal of Plant Biology
2007 Volume.50 No. 5 p.595 ~ p.599
Ethylene-induced stem growth of deepwater rice is correlated with expression of gibberellin- and abscisic acid-biosynthetic genes
Choi Dong-Su

Abstract
Ethylene decreases the content of endogenous abscisic acid (ABA) and increases the level of bioactive gibberellin A1 (GA1) in the submerged internodes of deepwater rice. During partial submergence, internodes of deepwater rice undergo rapid elongation as a result of ethylene accumulation in the internodal lacunae. In anin vitro experiment using stem sections from deepwater rice, treatment with 5 ¥ìL L-1 ethylene promoted stem growth by up to 3.2-foId times over air treatment. Expression patterns were analyzed for genes that encode GA- and ABA-biosynthesis enzymes to determine any possible molecular basis for the changes observed in GA1 and ABA contents as a result of ethylene action. Expression of theOsGA20ox2 andOsGA20ox4 genes, which encode GA 20-oxidase, and of theOsGA3ox2 gene, which encodes the enzyme that converts GA20 to CA1, was up-regulated, whereas that of three ABA-biosynthetic genes ?OsNCED1, OsNCED2, andOsNCEDS-was down-regulated in the presence of ethylene. These results indicate that GA and ABA contribute equally to the submergence-or ethylene-induced stem elongation of deepwater rice via the coordinated and opposite regulation of biosynthesis.
KEYWORD
abscisic acid, deepwater rice, ethylene, gibberellin, stem elongation
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)